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We discuss an adaptive mesh moving technique that can be used with a finite difference or 
tinite element scheme to solve initial-boundary value problems for systems of partial differen- 
tial equations in two space dimensions and time. The mesh moving technique is based on an 
algebraic node movement function determined from the geometry and propagation of regions 
having significant discretizaion error indicators. Our procedure is designed to be flexible, so 
that it can be used with many existing finite difference and finite element methods. To test the 
mesh moving algorithm, we implemented it in a system code with an initial mesh generator 
and a MacCormack Finite difference scheme on quadrilateral cells for hyperbolic vector 
systems of conservation laws. Results are presented for several computational examples. The 
moving mesh scheme reduces dispersive errors near shocks and wave fronts and thereby 
reduces grid requirements necessary to compute accurate solutions while increasing com- 
putational efficiency. IQ 1986 Academic Press, Inc. 

1. INTRODUCTION 

Mesh moving is an adaptive technique that has been used successfully to improve 
the accuracy of both finite element and finite difference schemes for a variety of 
time-dependent problems in one (cf., e.g., [l, 2, 4, 14, 15, 17, 21, 24, 27, 331) and 
two (cf., e.g., [12, 32, 33, 351) space dimensions. The essential idea is to move the 
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mesh either to minimize some quantity, such as the discretization error, or to follow 
some local nonuniformity, such as a wave front. This generally reduces dispersive 
errors and Courant number restrictions. 

In one dimension, Hyman [27] described a mesh moving scheme for hyperbolic 
conservation laws that minimized the time variation of the finite difference solution 
at the nodes. Davis and Flaherty [ 141 and Adjerid and Flaherty [ 1,2] developed 
finite element codes for parabolic systems that moved a mesh so as to equidistribute 
the spatial component of the discretization error. Miller et al. [21, 29, 301 
simultaneously determined the numerical solution and the node positions using a 
finite element method that minimized the residual for parabolic problems. Bell and 
Shubin [S] solved the Euler-Lagrange equations of an extremizing functional and 
used a finite difference scheme to solve hyperbolic conservation laws. All of these 
schemes have demonstrated that mesh moving can reduce discretization errors and 
provide improvements in computational efficiency. 

With some modification, the methods of Adjerid and Flaherty [I, 21, Hyman 
[27], and Miller et al. [21,29,30] can be extended to higher dimensions; however, 
many other mesh moving techniques are not directly applicable to two- and three- 
dimensional problems. One difficulty is that equidistribution strategies fail to 
produce unique solutions. Brackbill and Saltzman [ 12,351 have overcome this 
problem by adding the constraints of mesh smoothness and orthogonality to a 
variational problem. 

A successful mesh moving scheme for higher dimensional problems, that is, 
somewhat similar to the method presented here, is the algorithm of Rai and Ander- 
son [32, 33, 341. Their technique is based on a gravitational potential where nodes 
with higher- or lower-than-average discretization errors, respectively, attract or 
repel other nodes. The strength of the attraction or repulsion diminishes with 
increasing distance between nodes. Since each node affects all other nodes, a global 
calculation is necessary to determine each node’s velocity. 

Local mesh refinement is a different adaptive technique that consists of dividing 
or refining elements in regions where the solution is not adequately resolved. The 
advantage of this technique relative to mesh moving is that enough fine grids can be 
added to resolve the small-scale structures of the solution and provide solutions to 
within user-prescribed error tolerances. The local mesh refinement schemes of 
Berger [7,8,9], Flaherty and Moore [ZO], Gannon [22], and Bieterman and 
Babuska [ 10, 111 successfully satisfied prescribed error tolerances for different 
problems using finite element or finite difference schemes. The methods of Berger 
[7,8: 91 and Gannon [22] have also been applied to two-dimensional problems. 

The most promising algorithms appear to be those that combine both mesh mov- 
ing and local mesh refinement. It is our intention to consider such schemes; 
however, except for calculating an initial mesh, the computational procedures d-s- 
cussed here do not contain local refinement. 

The mesh moving technique that we have developed is simpie, efficient, and 
independent of the numerical method being employed to discretize the partial dif- 
ferential equations. At each time-step, it uses the node locations and the nodal 
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values of an error indicator, such as an estimate of the local discretization error or 
the solution gradient to control grid motion. Nodes with “significant error 
indicators” (cf. Sect. 2) are grouped into rectangular error clusters which separate 
spatially distinct phenomena of the solution. As time evolves, the clusters can move, 
change size, change orientation, collide, separate, reflect off boundaries, or pass 
through boundaries. At each time-step, new clusters can be created and old ones 
can vanish. The clustering algorithms we use are briefly described in Section 2 and 
were developed by Berger [7,9] for a mesh refinement scheme. 

Mesh movement is determined by a node’s relationship to the error clusters. 
Movement is done in two steps, each in a direction along a principal axis of a 
cluster rectangle. The amount of movement in each direction is determined by a 
movement function which moves the center of the cluster according to a differential 
equation suggested by Coyle, Flaherty, and Ludwig [13]. Additionally, the 
movement function smoothes mesh motion, reduces distortion and mesh tangling, 
and prevents nodes from moving outside the domain boundaries. 

In Section 2, we discuss error clustering, movement of the center of mass of the 
cluster, the node movement function, and the initial mesh generator. In Section 3, 
we discuss the MacCormack finite difference scheme for hyperbolic equations and 
the error indicators used in the computational examples. The results of the com- 
putational examples are given in Section 4, and Section 5 contains a discussion of 
the results of the experiments and the status of our algorithm. 

2. MESH MOVING SCHEME AND INITIAL MESH GENERATION 

We discuss a mesh moving scheme and an initial mesh generator that can be used 
in conjunction with a numerical procedure to solve time-dependent partial differen- 
tial systems on a rectangular domain. Suppose that the domain is discretized into a 
moving mesh of quadrilateral cells having vertices (or nodes), (-x,(t), yi(t)), 
i = 1, 2,..., N, that are numbered in a row sequential fashion. A representative cell 
and a sample mesh are shown in Figs. 3 and 4, respectively. We further suppose 
that an approximate solution vector u,(t), i = 1,2,..., N, of the partial differential 
system and a nonnegative scalar error indicator, e,(t), i = 1,2,..., N, are to be 
calculated at each node at time t > 0. The error indicator can be related to the local 
discretization error at a node; however, quantities proportional to the solution 
gradient, curvature, etc., can also be used. The error indicator serves to attract 
nodes, and, thus, it should be large where the mesh should be fine and small where 
the mesh should be coarse. The mesh moving scheme is discussed first in Section 2.1 
and the discussion of the initial mesh generator follows in Section 2.2. 

2.1. Mesk Moving Scheme 

Suppose the mesh, solution, and error indicator described above have been 
calculated up to a time t > 0. We scan the mesh at time t and flag “significant error 
nodes” as nodes having error indicators greater than twice the mean nodal error 
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indicator and also greater than a user-supplied tolerance. This empirical strategy 
avoids having the mesh respond to fluctuations when error indicators are too small, 
but is sensitive enough to avoid missing dynamic phenomena associated with large 
error indicators. If there are no significant error nodes, computation is performed 
on a stationary mesh. The nearest neighbor clustering algorithm of Berger [7: 91 is 
used next to cluster the significant error nodes. In this iterative algorithm, a cluster 
is first defined to consist of one arbitrary significant error node. Other significant 
error nodes are added to the cluster if they are within a specified minimum inter- 
cluster distance from the nearest node in the cluster. New clusters are established 
for nodes that do not belong to any existing cluster. Clusters are united when a 
node is determined to belong to more than one of them. Upon completion of the 
algorithm, (i) nodes in different clusters will be separated by at least the minimum 
intercluster distance, and (ii) no node in a cluster with more than one node will be 
further than the minimum intercluster distance from its nearest neighbor in the 
cluster. The minimum intercluster distance is chosen to be the length of a cell 
diagonal. 

Berger [7,9] shows that near minimum area rectangles that contain a cluster can 
be easily generated. The principal axes of shuch a rectangle are the major and 
minor axes of an enclosed ellipse with the same first and second moments as the 
clustered nodes. Thus, if x, and ym are the mean coordinates of the clustered nodes, 
then the axes of the rectangle are in the directions of the eigenvectors of the sym- 
metric (2 x 2) matrix 

The summations range over all nodes in the cluster. 
For problems with significant error nodes located on a long curved arc, the entire 

region may belong to one unacceptably large cluster. To prevent this ineffeciency 
and provide better alignment with curved fronts, the rectangular clusters are 
checked for efficiency by determining the percentage of significant error nodes in the 
cluster. If a 50 % efficiency is not achieved, the rectangle is iteratively bisected in the 
directon of the major axis. This is repeated until all clusters have a 50% efhcicncy 
or more. This nearest neighbor clustering separates spatially distinct phenomena, as 
shown by the dashed line error clusters on the mesh of Fig. 13, and provides some 
alignment with long curved error regions, as shown by the clusters in Figs. 14 
and 15. 

We determine node movement from the velocity of propagation, the orientation, 
and the size of error clusters. We do not follow or track surfaces of discontinuities 
exactly. We assume that nodes in the same cluster have related solution charac- 
teristics, so that we can determine individual node movement from the propagation 
of the center of mass of the error cluster. 

Hyman [27] and Harten and Hyman [24] developed a mesh moving algorithm 

561:57.1-9 
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for hyperbolic systems that moved the mesh with a weighted average of the charac- 
teristic velocities when multiple waves interacted. The same principle applies to our 
algorithm when several error clusters merge due to, e.g., wave interaction. The mesh 
moves with a velocity given by a weighted average of the velocities of the inter- 
secting error clusters. Comparisons between the center of mass propagation of an 
error cluster and the characteristic path of the center of the cluster are given in 
Example 4.2. 

Coyle et al. [13] showed that mesh movement can be unstable in certain 
situations. Following one of their suggestions, we move clusters according to the 
differential equation 

f+%=O, (2.2) 

where r(t) is the position vector of the center of an error cluster and a superim- 
posed dot denotes differentiation with respect to t. Equation (2.2) is conditionally 
stable (cf. Coyle et al. [ 13]), and when solved numerically with reasonable choices 
of ,l >O instabilities and oscillations in the mesh motion were not present. The 
choice of the parameter il can be critical in certain situations. If A is selected too 
large, the system (2.2) will be stiff and computationally expensive. On the other 
hand, if 2 is selected too small, the mesh can oscillate from time step-to-time step. 
Coyle et al. [13] and Adjerid and Flaherty [2] suggest some adaptive procedures 
for choosing 1; however, we found no appreciable differences in results or com- 
putation times when L was varied for the example considered in Section 4. These 
results were all calculated with A= 1, but more study of the effects of this parameter 
are needed. 

We solve (2.2) from t,,- i to t, and then for each cluster determine r(t,+ i) and 
the vector r(t,+l)-r(t,) h’ h . p w ic is rejected onto the two principal directions of the 
rectangular cluster at t,. These projected distances are the amounts by which the 
center of mass of the error cluster moves in each principal direction. Let Ar, and 
Ar, denote these projections and let CM denote the center of mass of the error 
cluster. We create a one-dimensional mesh movement function to move the nodes 
of the mesh along the two axial directions of the error clusters. A profile of our 
movement function is shown in Fig. 1; however, the algorithm is designed to be 
used with any one-dimensional movement function. The slope of the movement 
function depends on the length of the side of the cluster which is denoted as )Y in 
Figs. 1 and 2. 

di.inside 

/&\ - 
-3u/2 -u/2 CM u/2 3u/2 ’ 

--CLUSTER-- 

FIG. 1. Profile of the node movement function (cf. Eq. (2.3)). 
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FIG. 2. A node shown outside the range of an error cluster. The distance i is used in Eq. (2.4) to 
determine the amount of movement for this node. 

As shown in Fig. I, nodes inside the range of the cluster (shaded in Fig. 2) are 
moved a distance di,ins,de, i = 1, 2, in each principal direction given by 

if w/2 d x < 3w/2 

if -w/2<x<wJ2 (2.3) 

Ari(3/2 +x/w) if -3~12 <x < -w/2, i = 1, 2. 

Here, x is the projected distance in a principal direction of a node relative to the 
center of mass of the error cluster. To provide smooth node movement throughout 
the domain, nodes outside the range of the cluster move in a reduced amount deter- 
mined by 

4, outside =di,insic~eCl - (22/~)19 

where 2 is the shortest distance to the range of the cluster (cf. Fig. 2) and D is the 
diagonal distance of the entire domain. Node movement distances d,.ins,de and 
d ,,outsidc are reduced near boundaries to prevent nodes from leaving the domain. In 
particular, for nodes moving towards the edge of the domain, we recalculate d,,, as 
d,,[min( 1, h/c)], i= 1, 2, i= inside, outside, where b is the distance of the node to 
the boundary and c is twice the length of a cell diagonal on a uniform mesh having 
the same number of cells as the moving mesh. Nodes on domain boundaries, except 
corner nodes which are not moved, arc restrained to move along the boundary. 

2.2. Initial Mesh Generation 

The generation of a proper initial mesh is critical to the success of the mesh mov- 
ing scheme. Without relincment, the mesh moving algorithm cannot provide 
suitabie error control unless the initial mesh spacing properly resolves initial data. 
An initial error measure appropriate for the finite difference scheme of Section 3 is 
the error in interpolating the prescribed initial condition uO(x, J) on each cell by a 
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-I 
(Xi .Y i) 

I 

(Xk.yk) 

(Xj ,Yj 1 

FIG. 3. Node labelling of an arbitrary quadrilateral cell. 

bilinear polynomial. The error on each cell is determined as the difference between 
the value of the initial function and its bilinear interpolant at the center of each cell. 
Therefore, the initial mesh must be generated so that the condition 

wok, h) + u,(+ JQ) + uoh, 14 + u,(x,, VA} - u,(,u, mm < TOL (2.5) 

holds on each cell when using the vertex and center point labelling of a cell, as 
shown in Fig. 3 and a prescribed tolerance TOL. We satisfy condition (2.5) using 
an iterative scheme that begins by generating a uniform mesh and computing an 
initial error estimate from the left side of (2.5), we cluster nodes of high error and 
move them towards the centers of the clusters, and recompute the initial error. We 
then iteratively add rows and columns to the mesh wherever the error tolerance is 
exceeded, compute a new mesh by the scheme of Brackbill and Saltzman [ 121, and 
recompute the error until the prescribed tolerance is satisfied. 

Initial meshes generated with this algorithm are shown in Figs. 4, 6, 13, and 14 
for the initial conditions of the computational examples of Section 4. Any initial 
mesh generator that satisfies condition (2.5) could be used with our mesh moving 
scheme, and several such algorithms can be found in Thompson [36]. 

3. MACCORMACK FINITE DIFFERENCE SOLVER 
AND ERROR INDICATION 

To test our mesh moving scheme, we used the explicit finite difference MacCor- 
mack scheme on nonuniform quadrilateral grids for hyperbolic vector systems of 
conservation laws having the form 

u, + fxk J’, u, f) + g,b, Y, u, t) = 0, (3.1) 

4x7 E’, 0) = u,b, Y), (3.2) 

with appropriate well-posed boundary conditions. 
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To discretize (3.1), we introduce a transformation 

from the physical (x, y, t) domain to a computational (<, ye, T) domain where a 
uniform rectangular grid will be used. Under this transformation, (3.1) becomes 

The transformation metrics (t,, tY, cr, q.,, q,,, v],) are related to the metrics (x,, 
-xy, XT, Y:, .vq, J!+) of the inverse mapping of the computational domain to the 
physical domain by the identities 

Using (3.5) in (3.4) gives 

u, + M~(L’~x~ -x,y,)/J+ u,(yp- xcyr)/J 

+ f,s+/J+ f,( - y:/J) + g;,( -x,!,‘J) -I- g,x,.lJ= 0. (3.6) 

We discretized (3.6) by the MacCorrnack scheme using first-order-forward dif- 
ference approximations in the predictor step and first-order-backward differences In 
the corrector step. It was shown by Hindman [25,26] that this differencing of 
Eqs. (3.4) or (3.6) produces consistent and conservative approximations. We 
automatically adjust the time step so as to satisfy the Courant, Friedrichs, Lewy 
Theorem. 

As previously noted, several quantities can be used as error indicators, In the 
computational examples of Section 4, we used either solution gradients of differen- 
ces between the predicted and corrected solutions of MacCormack’s method as 
error indicators. The latter error indicator is actually an estimate of the local dis- 
cretization error of the predicted solution and not the second order corrected 
soiution; however, it does have the proper propagation characteristics. Other more 
reliable error estimates will be needed when local mesh refinement is introduced. 
Error estimators that we are investigating are based on combining extrapolation 
and the difference between predicted and corrected solutions. Results of this method 
are reported in Arney [3]. Other possibilities are to use hierarchical 
approximations as done by, e.g., Adjerid and Flaherty Cl: 23 and Zienkiewicz 
et ai. [39]. 
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4. COMPUTATIONAL EXAMPLES 

We solved a sequence of hyperbolic equations using the initial mesh generator of 
Section 2 and the MacCormack scheme of Section 3 as tests of our mesh moving 
technique. Significant error nodes are marked with an asterisk and rectangular 
error clusters are outlined with dashed lines in the figures accompanying the exam- 
ples. As noted in Section 2, the parameter ,I of Eq. (2.2) was selected as unity. 

EXAMPLE 4.1. Consider the linear scalar hyperbolic differential equation 

u,+u,+u,/4=0, t>o, - 0.2 < x 6 0.8, 0 < y < 1, (4.1) 

with initial conditions 

0.8 if y < -4x + 1.2 

24(x, y, 0) = 0.0 if y> -4x+ 1.6 (4.2) 

-8x-2y+3.2 otherwise, 

FIG. 4. Meshes of Example 4.1 at t=O.O (top) and at t=0.4 (bottom). 
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and with Dirichlet boundary conditions 

if y - 0.2% < -4(x - t) t 1.2 

if ~1-0.2%> -4(x-t)+ 1.6 

-8(x - t) - 2( )’ - 0.2%) + 3.2 otherwise. (4.3) 

The solution of this problem is an oblique wave front that moves at an angle of 
14 degrees across the domain. We selected it to show the concentration of the initial 
mesh within the front, the partial alignment of the initial mesh with the front the 
propagation of the refined region of the mesh with the moving front, and the re 
tion of dispersive errors with a moving mesh. The magnitude of the gradient of the 
solution was used as an error indicator and a value of TOL = 0.01 was used in 
Eq. (2.5). 

The computational meshes at t = 0 and t = 0.4 are shown in Fig. 4. At each time- 
step, the nodes are moving with the wave front at nearly the characteristic speed. 
This reduces dispersive errors. as shown in the surface plots of the solution in 
Fig. 5, which compare the solution calculated on the moving mesh with one 
calculated on a stationary uniform mesh having the same number of nodes. Observe 

FIG. 5. Surface plots of the solution of Example 4.1 at I = 0.4 using a stationary uniform mesh (top) 
and a moving mesh (bottom). The moving mesh reduces numerical oscillations behind the propagatmg 
wave. 
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FIG. 6. Initial mesh for the rotating cone of Example 4.2. 

that node movement occurs without severe distortion of cells or nodes 
accumulating near, or passing through, the outflow boundaries. 

EXAMPLE 4.2. Consider the initial boundary value problem 

ut-yyu,+xuy=o, t > 0, - 1.2 d x, y < 1.2, (4.4) 

44 y, 0) = 
0 if (x - 1/2)2 + 1.5~~2 l/16 
1 - 16((x - 1/2)2 + 1.5~~) otherwise, (4.5) 

FIG. 7. Mesh of Example 4.2 at t = 1.6. Nodes are moving with the rotating cone. 
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FIG. 8. Mesh of Example 4.2 at f = 3.2. Nodes continue to move with the rotating cone with some 
crowding near the boundary 

and 

u( 1.2, y, t) = U( - 1.2, y, t) = U(X, - 1.2, t) = u(x, 1.2, t) = 0. 

The exact solution of this problem is 

(4.6 

4.T y, f) = 
i 

0 if Cc0 
C if C>O, 

where 

(4.7 

C=1-16[(xcosr+ysint-1/2)2+1.5(ycost-xsint)2]. (4.8 

Equations (4.7) and (4.8) represent a moving elliptical cone rotating counter 
clockwise around the origin with period 2n. This problem was proposed as a test 
problem by Gottlieb and Orszag [23] and we selected it because the rotational 
quality of the error region is a good test of a mesh moving scheme. 

The initial mesh (cf. Fig. 6) has an interpolation error less than 0.08 and (as in 
Examples 4.3 and 4.4) the difference between the predicted and corrected steps of 
MacCormack’s method was used as an error indicator. Figures 7 and 8 show the 
mesh at t = 1.6 and t = 3.2 respectively. The nodes follow the moving cone and keep 
it within the refined region. Figures 9 and 10 compare the contour and surface 
plots, respectively, of the solution at t = 3.2 on the moving mesh with one on a 
32 x 32 uniform stationary mesh. The dispersive error distorts the cone and leaves a 
wake behind it. These errors are significantly reduced by the mesh moving scheme. 
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l’OOr------ 

-LOO/ 
-1.00 0.00 1.00 

FIG. 9. Contour plots of solutions of Example 4.2 on a moving mesh (top) and a stationary mesh 
(bottom) at 2 = 3.2. 

Figure 11 compares the path of the center of mass of the single error cluster using 
(2.2) and the real characteristic path of the peak of the cone. As expected for this 
scalar hyperbolic problem, the movement of the center of error mass determined by 
(2.2) closely approximates the characteristic path of the peak of the cone with a 
maximum difference of 4 percent in length and direction. 

EXAMPLE 4.3. This problem is similar to Example 4.2 except there are now two 
symmetric cones rotating counterclockwise about the origin. The problem is given 
by Eq. (4.4), Eq. (4.6), and new initial conditions provided by 

1 - 16((x - l/2)* + 1.5~‘) if (x - l/2)’ + 1.5~7’ < l/16 

1 - 16((x + l/2)* + 1.5~‘) if (x + 1/2)I + 1.5~’ d l/16 (4.9) 

0 otherwise. 

Figure 12 shows the mesh at t = 1.05, which has poor aspect ratios and severe 
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FIG. 10. Surface plots of solutions of Example 4.2 on a moving mesh (top) and a stationary mesh 
(bottom) at t = 3.2. 

mesh distortion caused by the rotation of the error regions. The mesh tangles as the 
cones rotate further. When such mesh tangling occurs, a static rezone is necessary 
to create a new mesh. The rezoning can use an algorithm similar to the one that 
generated the initial mesh. The data at the new nodes must be obtained by inter- 
polation from the calculated solution at the old nodes by a conservative rezoning as 

FIG. 11. Comparison of the characteristic path of the peak of the cone and the path of the center of 
error as determined by Eq. (2.2) for Example 4.2. 
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FIG. 12. Distorted mesh of Example 4.3 at t = 1.05 showing the need for static rezoning. 

presented in Dukowicz [ 161. A static rezone procedure accomplishing these goals is 
described in Arney [3]. 

EXAMPLE 4.4. Consider the uncoupled system 

2.4, + 24, = 0, Ut-Uo,=O, t>o, -l<X,Y,<l, (4.10) 

4x, Y, 0) = 
1 - 16((x - 1/2)2 + 1.5~~) 
o (4.11a) 

44 YY 0) = 
1 - 16((x + l/2)* + 1.5~~) 
o 

;th;;w;sk/2’2 + ls5Y2 6 25 (4.11b) 

U(X, y, t) = ZI(X, y, t) = 0 on the boundary of the domain (4.12) 

The solution of this problem is two moving cones that pass through one another. 
This causes the error clusters to collide and merge, and then later separate. 
Figure 13 shows the meshes used to solve this problem at t = 0, t = 0.35, t = 0.9, and 
t = 1.3. Initially there are two spatially distinct error clusters (cf. the upper left mesh 
of Fig. 13). At t = 0.35, the two clusters have collided and merged into a single 
cluster (cf. the upper right mesh of Fig. 13). From t = 0.35 to t = 0.9, the single 
cluster stays centered at the origin so the mesh does not move during this time. At 
t = 0.9, the cones have passed completely through one another and the single cluster 
has separated into two clusters which move towards the boundary of the region (cf. 
the lower left mesh of Fig. 13). Finally, at t = 1.3. The cones and error clusters have 
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FIG. 13. Meshes of Example 4.4 at (A) t = 0, (B) t = 0.35, (C) 1= 0.9, and (D) t = 1.3. Initially there 
are two spatially distinct error clusters, at t = 0.35 the two clusters have merged into a single cluster, at 
t=0.9 the singk cluster separates into two clusters, and at t= 1.3 the two clusters have reached the 
domain boundary. 

reached the domain boundary (cf. the lower right mesh of Fig. 13) and no furt 
movement of the mesh will take place as the cones exit the domain. 

EXAMPLE 4.5. Consider the Euler equations for a perfect inviscid fluid, whie 
have the form of Eq. (3.13) with 

(4.13a) 
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f(u) = Pu2+P i 1 puv ’ 

u(e+p 

(4.13b) 

(4.13c) 

In the above equations, u and v are the velocity components in the x and J direc- 
tions, p is the density, e is the total energy per unit volume, and p is the pressure 
which is given by 

p = (y - l)[e -p(u2 + 0’)/2]. (4.13d) 

We solve a problem where a Mach 10 shock moves down a channel containing a 
wedge. The computational domain, -0.3 d x < 1.9, 0 d y d 1, is oriented along the 

Y 

x 
r 

Y 

Y 

x 

FIG. 14. Meshes of Example 4.5 at I = 0 (top), c = 0.01 (center), t = 0.02 (bottom). 
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wedge so that the wedge lies on the bottom boundary in the region y =O, 
i < x < 1.9. The initial conditions 

p = 8.0, p = 116.5, e = 563.5, u=4.125 .& v = -4.125, 

if J’ < J~(x - l/6), (4.14a) 

and 

p = 1.4, p = 1.0, e = 2.5, u = 0, v =O, if y 2 ,/?(x - l/6), 

(4.14bj 

represent a Mach 10 shock in air (II= 1.4), which initially makes a 60 degree angle 
with the reflecting wall and moves into undisturbed air. Along the left boundary 
(X = -0.3) and the bottom boundary to the left of the wedge ( y = 0, -0.3 d x < b)* 
we prescribe Dirichlet boundary conditions according to (4.14): along the top 
boundary (1’ = 1 ), values are set to describe the exact motion of an undisturbed 
Mach 10 shock flow; along the right boundary (x= 1.9), all normal derivatives are 
set to 0; and along the wedge (4’ = 0, d d x < 1.9) reflecting boundary conditions are 
used. 

This problem was used as a test problem by Woodward and Collela [38] ic 
compare several finite difference schemes on uniform grids for the Euler Equations 

The MacCormack finite difference scheme needs artificial viscosity to “‘capture” 
the shocks of this problem. We used the artificial viscosity developed by Lapidus 
[28] which is velocity dependent and was used with the MacCormack scheme by 
Woodward and Collela [38]. 

The initial mesh used for this problem is 45 x 30, and is shown in Fig. 14 (top). 
We used the magnitude of the density gradient as the error indicator. From t = 0 to 

FIG. 15. Meshes of Example 4.5 at t =0.04 (top), 1=G.08 (bottom). 
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FIG. 16. Contour plots of density from the calculated solutions of Example 4.5 at t =0.08 on a 
stationary mesh (top) and on a moving mesh (bottom) as shown in Figs. 14 and 15. 

t =O.Ol, one error cluster is formed that includes both the Mach 10 shock and the 
smaller reflected shock region. The resulting mesh at t = 0.01 is shown in Fig. 14 
(center). This single error cluster is inefficient since it includes different structures of 
the solution with different propagation velocities. At t = 0.02, the clustering 
algorithm has recognized two different structures and has clustered the error nodes 
as shown in Fig. 14 (bottom). At t =0.04, three different structures, the Mach 10 
shock, the reflected shock, and a Mach stem region, are recognized by the cluster- 
ing algorithm as shown in Fig. 15 (top). The nodes of the mesh are now able to 
move with the different velocities of these structures. However, by f= 0.08, it is 
evident from the mesh of Fig. 15 (bottom) that there are not enough nodes to 
resolve the continuing elongation of the reflected shock region. Mesh refinement is 
necessary to continue the effective computation of the solution for t > 0.08. 

Contour plots of the density at t = 0.08 using the moving mesh and a uniform 
stationary mesh with the same number of nodes are compared in Fig. 16. The mov- 
ing mesh reduces the numerical oscillations and provides finer resolution of the 
shocks and the first contact discontinuity. However, neither calculation was able to 
resolve the tine structures of the second Mach stem and contact discontinuity. 

5. CONCLUDING REMARKS 

We have described a general two-dimensional mesh moving technique that 
enables a mesh to follow the propagation of given error indicators. Mesh motion is 
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determined from the movement of clusters of nodes with significantly high error. 
This procedure was tested on hyperbolic problems having solutions with large 
gradients. 

Even though mesh moving in two dimensions is difficult, we are encouraged by 
our initial results. The mesh moving algorithm was able to move with the wave and 
shock fronts of Examples 4.1 and 4.5, control the error of the rotating cone in 
Example 4.2, and handle the merging and separation of error regions in Exam- 
ple 4.4. The distortion of the mesh in Example 4.3 shows the need for static rezon- 
ing when such severe distortions occur. The elongation of the reflected shock region 
of Example 4.5 demonstrates the need for local mesh refinement procedures. 

We are investigating ways to improve the efficiency, reliability, and robustness of 
the mesh moving algorithm. Possible improvements include (i) not clustering at 
every time-step and letting the mesh move at a constant velocity for several time- 
steps, (ii) efficiently testing for mesh tangling or distortion, and (iii) using a better 
solver for hyperbolic equations, such as the total variation diminishing schemes of 
Engquist and Osher [18], Osher and Chakravarthy [31], or van Leer [37]. These 
methods are based on the approximate solution of one-dimensional Riemann 
problems and they can be used, via operator splitting, with our mesh moving 
technique. Since the moving mesh is partially aligned with dominant dynamic 
phenomena, such as shock waves, we would expect these methods to perform 
significantly better than they do on stationary two-dimensional meshes. We also 
hope to show the flexibility of the mesh moving algorithm by implementing it with 
a finite element solver for parabolic problems. Finally, we intend to include local 
mesh refinement in the solution algorithm. This combination of mesh moving and 
refinement should enhance efficiency, accuracy, and robustness. 
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